10 Breakthrough Technologies in 2017

0
31

10 Breakthrough Technologies in 2017

These technologies all have staying power. They will affect the economy and our politics, improve medicine, or influence our culture. Some are unfolding now; others will take a decade or more to develop. But you should know about all of them right now.

NUMBER ONE: Reversing Paralysis

Scientists are making remarkable progress at using brain implants to restore the freedom of movement that spinal cord injuries take away.

The French neuroscientist was watching a macaque monkey as it hunched aggressively at one end of a treadmill. His team had used a blade to slice halfway through the animal’s spinal cord, paralyzing its right leg. Now Courtine wanted to prove he could get the monkey walking again. To do it, he and colleagues had installed a recording device beneath its skull, touching its motor cortex, and sutured a pad of flexible electrodes around the animal’s spinal cord, below the injury. A wireless connection joined the two electronic devices.

The result: a system that read the monkey’s intention to move and then transmitted it immediately in the form of bursts of electrical stimulation to its spine. Soon enough, the monkey’s right leg began to move. Extend and flex. Extend and flex. It hobbled forward. “The monkey was thinking, and then boom, it was walking,” recalls an exultant Courtine, a professor with Switzerland’s École Polytechnique Fédérale de Lausanne.

In recent years, lab animals and a few people have controlled computer cursors or robotic arms with their thoughts, thanks to a brain implant wired to machines. Now researchers are taking a significant next step toward reversing paralysis once and for all. They are wirelessly connecting the brain-reading technology directly to electrical stimulators on the body, creating what Courtine calls a “neural bypass” so that people’s thoughts can again move their limbs.

At Case Western Reserve University, in Cleveland, a middle-aged quadriplegic—he can’t move anything but his head and shoulder—agreed to let doctors place two recording implants in his brain, of the same type Courtine used in the monkeys. Made of silicon, and smaller than a postage stamp, they bristle with a hundred hair-size metal probes that can “listen” as neurons fire off commands.

To complete the bypass, the Case team, led by Robert Kirsch and Bolu Ajiboye, also slid more than 16 fine electrodes into the muscles of the man’s arm and hand. In videos of the experiment, the volunteer can be seen slowly raising his arm with the help of a spring-loaded arm rest, and willing his hand to open and close. He even raises a cup with a straw to his lips. Without the system, he can’t do any of that.

Just try sitting on your hands for a day. That will give you an idea of the shattering consequences of spinal cord injury. You can’t scratch your nose or tousle a child’s hair. “But if you have this,” says Courtine, reaching for a red espresso cup and raising it to his mouth with an actor’s exaggerated motion, “it changes your life.”

Reversing Paralysis
BreakthroughWireless brain-body electronic interfaces to bypass damage to the nervous system.
Why It MattersThousands of people suffer paralyzing injuries every year.
Key Players – École Polytechnique Fédérale de Lausanne
– Wyss Center for Bio and Neuroengineering
– University of Pittsburgh
– Case Western Reserve University
Availability10 to 15 years